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SUMMARY

In Stokes equations the velocity u and the pressure p are coupled together by the imcompressibility
condition div u= 0 which makes the equations difficult to solve numerically. In this paper, a method
named Sinc-collocation method with boundary treatment (SCMBT) is applied to the Stokes equations. The
numerical results show that our method is of high accuracy, of good convergence with little computational
effort. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Stokes equations and the Navier–Stokes are of much concern. The Stokes equations describe
the stable fluid flow, without nonlinear terms, and the Navier–Stokes equations describe the fluid
flow developing with time [1]. By neglecting the term of �u/�t and the nonlinear convection, the
Navier–Stokes equations can be transformed into the Stokes equations which can be regarded as
an approximation of the Navier–Stokes equations when the Reynolds number is very low or the
velocity is very small.

The Stokes equations discussed in this paper are: (�= [0, 1] × [0, 1]):
px = uxx + uyy + f1 in �

py = vxx + vyy + f2 in �

ux + vy = 0 in �

(1)

∗Correspondence to: Xionghua Wu, Department of Applied Mathematics, Tongji University, 200092 Shanghai,
People’s Republic of China.

†E-mail: wuxhlu@mail.tongji.edu.cn

Contract/grant sponsor: National Natural Science Foundation of China

Copyright q 2006 John Wiley & Sons, Ltd.



1064 C. LI AND X. WU

Much work has been done for the Stokes equations, most of which has been completed using
the finite element method. Quazzi [2] introduced the vorticity variable, � = curl u, to study the
equations; Bochev and Gunzburger [3] adopted the least squares finite element method to the
equations; Belgacem et al. [4] studied the mortar spectral element method for the Stokes equations;
Jou and Liu [5] gave a posteriori finite element error analysis for the Stokes equations.

There are some difficulties in solving the Stokes equations. Firstly, there is evidently no transport
or other equation for pressure. The velocity u and the pressure p are coupled together, and this
makes the numerical solution difficult. In addition, satisfaction of the continuity equation is not
automatic, and the condition should be enforced.

Sinc methods have been studied extensively and found to be a very effective technique, partic-
ularly for problems with singular solutions and those on unbounded domains. In addition, Sinc
function seem to capture oscillating behaviours in space, hence, are useful to deal with problems
characterized by this type of solution [6]. References [7, 8] provide overviews of the methods
based on the Sinc function for solving ODE, PDE and integral equations.

In References [9, 10], a method named the Sinc-collocation method with boundary treatment
(SCMBT) was introduced, which was applied to two-point initial-boundary value problems and
two-dimensional elliptic boundary value problems. It is difficult for the traditional Sinc method
to solve two-dimensional elliptic boundary value problems a mixed nonhomogeneous boundary
condition [11]. By using SCMBT, no matter what the boundary conditions are, the boundary
conditions can be dealt with directly and successfully.

In this paper, SCMBT is applied to the Stokes equations. With our method, we successfully
can overcome the difficulty mentioned above. We split the coefficient matrices into block matrices
which allow the boundary nodes to be separated from the internal nodes.

To overcome the difficulties, we take the steps as follows. From the first two equations of (1),
we can obtain a Poisson equation for p. In addition, the boundary conditions for px and py can
be expressed by functions for u and v from the first two equations of (1). All of these equations
are discretized by the SCMBT. Then px and py can be eliminated in the discretized equations.
Thus, the numerical results of u and v can be obtained. Meanwhile, the continuity equation is
automatically satisfied by this method.

The numerical results indicate that our method for the Stokes equations is effective. Our method
is of high accuracy, simple in principle, easy to program and easy to treat the pressure boundary
conditions.

The content of this paper is developed in the four sections, as follows: Section 2 introduces the
formulations of SCMBT; Section 3 applies SCMBT to the Stokes equations; Section 4 consists of
some numerical examples; and Section 5 is a short conclusion.

2. FORMULATIONS OF SCMBT

2.1. SCMBT formulae in one variable

For a function w(x) on the interval [0, 1], we can get the discrete formulae for wxx = f1, wx = f2
(for details see References [9, 10]).

Let �(x) be a one-to-one conformal map of interval [0, 1] onto the real line. Here t = �(x)
is the double exponential transformation (DE transformation) [12]. Let �= �−1 denote the
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reverse map, in addition

x =�(t) = 1

2
tanh

(�

2
sinh t

)
+ 1

2

The double exponential formula (DE formula), which is a quadrature formula based on the
DE transformation, was first proposed by Takshasi and Mori [12] in 1974. The DE formula has
been widely used in the last three decades and is now recognized to be one of the most efficient
quadrature formulae [13, 14]. The use of the DE transformation technique in the Sinc method yields
a highly efficient numerical method for interpolation, quadrature, approximation of transformation,
differential and partial differential equations [14–16].

It is known that the Sinc-collocation method with n collocation points converges at the rate
of exp(−�

√
n) with some �>0 under certain condition. From Reference [14], we know that the

Sinc-collocation incorporated with the DE transformation converges at the rate of exp(−�′n/ log n)

with some �′>0 under rather stringent condition (we have achieved this rate convergence in our
numerical examples of Section 4 by our method).

Denotew=[w(0), wx (0), w(x−M ), . . . , w(xN ), wx (1), w(1)]T, thenwxx = f1 can be discretized
as (for details see References [9, 10])

Bw= QF1 (2)

where

B = [B1, B2, B̃, B3, B4], F1 =[ f1(x−M−1), . . . , f1(xN+1)]T, Q = D

(
1

�′

)

B1 = Q�′′
00 − B̃�̃00, B2 = Q�′′

01 − B̃�̃01, B3 = Q�′′
11 − B̃�̃11, B4 = Q�′′

10 − B̃�̃10

And here set �00(x)= (2x + 1)(1 − x)2, �10(x)= x2(3 − 2x),�01(x)= x(1 − x)2, �11(x)=
x2(x − 1).

Let �̃i j =[�i j (x−M ), . . . ,�i j (xN )]T, �′′
i j =[�′′

i j (x−M−1), . . . ,�′′
i j (xN+1)]T, where i = 0, 1,

j = 0, 1.

B̃ =
[
Ĩ (2)

h2x
+ D

(
�′′

(�′)2

)
Ĩ (1)

hx
+ D

(
1

�′

(
1

�′

)′′)
Ĩ (0)

]
D(�′) (3)

Set m = M + N + 1. The matrix B̃ is a (m + 2) × m matrix. The matrices Ĩ (r), r = 0, 1, 2 are
(m + 2)×m and the diagonal matrices D(1/�′), D(�′′/(�′)2) and D(1/�′(1/�′)′′) are (m + 2)×
(m + 2) matrices. The diagonal matrix D(�′) is a m ×m matrix. Ĩ (r) = (�(r)

jk ), k = −M, . . . , N ,
and j =−M − 1,−M, . . . , N , N + 1.

Thus, B is a (m + 2) × (m + 4) matrix.
Similarly, wx = f2 can be discretized as (for details see Reference [9])

Aw= QF2 (4)
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where

A = [A1, A2, Ã, A3, A4], F2 =[ f2(x−M−1), . . . , f2(xN+1)]T

A1 = Q�′
00 − Ã�00, A2 = Q�′

01 − Ã�01, A3 = Q�′
11 − Ã�11, A4 = Q�′

10 − Ã�10

Ã =
[
−D

(
1

�′

)
Ĩ (1)

hx
+ D

(
1

�′

(
1

�′

)′)
Ĩ (0)

]
D((�′))

2.2. SCMBT formulae for general cases in two variables

In this part, we will discuss the discretized formula for wy = f2, wx = f3, wyy = f4 and wxx = f5
on �=[0, 1]× [0, 1]. Here w(x, y) is not bound to be zero on the boundaries. Similarly, they can
be discretized as, respectively (for details see References [9, 10]),

Q
x
W AT

y = Qx F2Qy, AxWQ
y
= Qx F3Qy (5)

Q
x
W BT

y = Qx F4Qy, BxWQ
y
= Qx F5Qy (6)

where Q
x
, Q

y
, Bx , By are the same with the matrices obtained by applying our formulae for one

variable in x and y directions, respectively.
And mx = Mx +Nx +1,my = My+Ny+1. For simplicity of the expressions, set Mx = My = M ,

Nx = Ny = N and Mx + Nx + 1= My + Ny + 1= M + N + 1=m without loss of generality.
Thus, we have

A= Ay = Ax , B = By = Bx , Q = Q
y
= Q

x
, Q = Qy = Qx (7)

where Ax , Bx , Qx
, Qx Ay, By, Qy

and Qy are the same as those in (5) and (6).
In addition, W in (5) and (6) is defined as

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w00 wy00 w0 j wy01 w01

wx00 wxy00 wx0 j wxy01 wx01

wi0 wyi0 W̃ wyi1 wi1

wx10 wxy10 wx1 j wxy11 wx11

w10 wy10 w1 j wy11 w11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

where W̃ = (w(xl , yk))m×m, w0 j = (w(0, yk)), wx0 j = (wx (0, yk)), wx1 j = (wx (1, yk)), w1, j =
(w(1, yk)),wi0=(w(xl , 0)),wi1=(w(xl , 1)),wxi0=(wx (xl , 0)),wxi1=(wx (xl , 1)), l=−M, . . . , N ,

k = −M, . . . , N , w00 =w(0, 0), w01 =w(0, 1), w10 = w(1, 0), w11 = w(1, 1), wx00 = wx (0, 0),
wx01 = wx (0, 1), wx10 =wx (1, 0), wx11 = wx (1, 1), wy00 = wy(0, 0), wy01 = wy(0, 1), wy10 =
wy(1, 0), wy11 =wy(1, 1), wxy00 =wxy(0, 0), wxy01 = wxy(0, 1), wxy10 = wxy(1, 0) and wxy11 =
wxy(1, 1). Here W̃ is a m × m matrix, w0 j , wx0 j , wx1 j , w1, j ; are row vectors, and wi1, wxi0,

wxi1, wi0 are column vectors.
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3. APPLYING SCMBT TO THE STOKES EQUATIONS

The Stokes equations discussed here are: (� = [0, 1] × [0, 1]):

px = uxx + uyy + f1 in �

py = vxx + vyy + f2 in �

ux + vy = 0 in �

(9)

In order to express our method clearly, some definitions will first be introduced.
If D =[d1, d2, . . . , dk] is a matrix and di (i = 1, 2, . . . , k) are l × 1 vectors, denote Vec(D) as

follows:

Vec(D) =

⎡⎢⎢⎢⎢⎢⎢⎣

d1

d2

...

dk

⎤⎥⎥⎥⎥⎥⎥⎦ (10)

A, B and Q in (7) are, respectively, split into the following block matrices:

A= [A1, A2, A3] =

⎡⎢⎢⎣
A11 A12 AT

13 A14 A15

A21 A22 A23 A24 A25

A31 A32 AT
33 A34 A35

⎤⎥⎥⎦ (11)

B =[B1, B2, B3] =

⎡⎢⎢⎣
B11 B12 BT

13 B14 B15

B21 B22 B23 B24 B25

B31 B32 BT
33 B34 B35

⎤⎥⎥⎦ (12)

Q =[Q1, Q2, Q3] =

⎡⎢⎢⎣
Q11 Q12 QT

13 Q14 Q15

Q21 Q22 Q23 Q24 Q25

Q31 Q32 QT
33 Q34 Q35

⎤⎥⎥⎦ (13)

where A1, A3, B1, B3, Q1 and Q3 are columns, A2, B2, Q2 are (m + 2) × (m + 2) matrices, A13,
A33, A21, A22, A24, A25, B13, B33, B21, B22, B24, B25, Q13, Q33, Q21, Q22, Q24 and Q25 are m×1
columns, A23, B23, Q23 are m×m matrices, A11, A12, A14, A15, A31, A32, A34, A35, B11, B12, B14,
B15, B31, B32, B34, B35, Q11, Q12, Q14, Q15, Q31, Q32, Q34 and Q35 are real numbers.
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Like the definition in (8), set

U =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u00 uy00 u0 j uy01 u01

ux00 uxy00 ux0 j uxy01 ux01

ui0 uyi0 Ũ uyi1 ui1

ux10 uxy10 ux1 j uxy11 ux11

u10 uy10 u1 j uy11 u11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
u1 uT2 u3

u4 u5 u6

u7 uT8 u9

⎤⎥⎥⎦ , u5 =

⎡⎢⎢⎣
u1 uT2 u3

u4 u5 u6

u7 uT8 u9

⎤⎥⎥⎦ (14)

V =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v00 vy00 v0 j vy01 v01

vx00 vxy00 vx0 j vxy01 vx01

vi0 vyi0 Ṽ vyi1 vi1

vx10 vxy10 vx1 j vxy11 vx11

v10 vy10 v1 j vy11 v11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
v1 vT2 v3

v4 v5 v6

v7 vT8 v9

⎤⎥⎥⎦ , v5 =

⎡⎢⎢⎣
v1 vT2 v3

v4 v5 v6

v7 vT8 v9

⎤⎥⎥⎦ (15)

P =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p00 py00 p0 j py01 p01

px00 pxy00 px0 j pxy01 px01

pi0 pyi0 P̃ pyi1 pi1

px10 pxy10 px1 j pxy11 px11

p10 py10 p1 j py11 p11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, P5 = P =

⎡⎢⎢⎣
p00 p0 j p01

pi0 P̃ pi1

p10 p1 j p11

⎤⎥⎥⎦ (16)

where Ũ = (w(xl , yk))m×m , Ṽ = (w(xl , yk))m×m , P̃ = (w(xl , yk))m×m , u5 = Ũ , v5 = Ṽ . And
u1 = u00, uT2 =[uy00, u0 j , uy01], u3 = u01, u7 = u10, uT8 =[uy10, u1 j , uy11], u9 = u11, u4 = [ux00,
uTi0, ux10]T, u6 =[ux01, uTi1, ux11]T, u1 = uxy00, uT2 = ux0 j , u3 = uxy01, u4 = uyi0, u6 = uyi1,
u7 = uxy10, uT8 = ux1 j , u9 = uxy11, v1 = v00, v

T
2 = [vy00, v0 j , uy01], v3 = v01, v7 = v10, v

T
8 =[vy10,

v1 j , uy11], v9 = v11, v4 =[vx00, vTi0, vx10]T, v6 = [vx01, vTi1, vx11]T, v1 = vxy00, vT2 = vx0 j ,
v3 = vxy01, v4 = vyi0, v6 = vyi1, v7 = vxy10, vT8 = vx1 j and v9 = vxy11.

In addition, u00, uy00, u0 j , uy01, u01, ux00, uxy00, ux0 j , uxy01, ux01, ui0, uyi0, uyi1, ui1,
ux10, uxy10, ux1 j , uxy11, ux11, u10, uy10, u1 j , uy11, u11, v00, vy00, v0 j , vy01, v01, vx00, vxy00, vx0 j ,
vxy01, vx01, vi0, vyi0, vyi1, vi1, vx10, vxy10, vx1 j , vxy11, vx11, v10, vy10, v1 j , vy11, v11, p00, py00,
p0 j , py01, p01, px00, pxy00, px0 j , pxy01, px01, pi0, pyi0, pyi1, pi1, px10, pxy10, px1 j , pxy11, px11,
p10, py10, p1 j , py11 and p11 are similar as those definitions in (8).
In this paper, we try to solve the Stokes equations by the SCMBT in the following steps.
Step 1: The aim of this step is to obtain the equations of px and py .
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By taking the divergence of both sides of the first two equation of (9) and taking into account
the condition divu= 0, we obtain

�p= div f

i.e.

pxx + pyy = f1x + f2y (17)

Setting g= f1x + f2y , then

pxx + pyy = g (18)

Step 2: The aim of this step is to get the expression of P expressed by the elements of U, V
defined in (14) and (15).

By (9) and with direct computation, we can have

pxy = f1y + f2x
2

Thus,

pxy00 = f1y(0, 0) + f2x (0, 0)

2
, pxy01 = f1y(0, 1) + f2x (0, 1)

2

pxy10 = f1y(1, 0) + f2x (1, 0)

2
, pxy11 = f1y(1, 1) + f2x (1, 1)

2

(19)

From the first two equations of (9), we get

px = uxx + uyy + f1 = uyy − vxy + f1 (20)

py = vxx + vyy + f2 = vxx − uxy + f2 (21)

Discretize (20) by using the formulae (2)–(6) in Section 2 and with the block matrices definitions
in (14)–(16), then we have:

[px00, px0 j , px01] = [u00, uy00, u0 j , uy01, u01]BT(Q
T
)−1

−[vx00, vxy00, vx0 j , vxy01, vx01]AT(Q
T
)−1 + F10 j (22)

where F10 j =[ f1(0, 0), f1(0, y−M ), . . . , f1(0, yN ), f1(0, 1)].
Similarly, we have:

[px10, px1 j , px11] = [u10, uy10, u1 j , uy11, u11]BT(Q
T
)−1

−[vx10, vxy10, vx1 j , vxy11, vx11]AT(Q
T
)−1 + F11 j

(23)
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⎡⎢⎢⎣
py00

pyi0

py10

⎤⎥⎥⎦ = (Q)−1B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v00

vx00

vi0

vx10

v10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (Q)−1A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uy00

uxy00

uyi0

uxy10

uy10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ F2i0 (24)

⎡⎢⎢⎣
py01

pyi1

py11

⎤⎥⎥⎦ = (Q)−1B

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

v01

vx01

vi1

vx11

v11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
− (Q)−1A

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uy01

uxy01

uyi1

uxy11

uy11

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ F2i1 (25)

where F10 j = [ f1(1, 0), f1(1, y−M ), . . . , f1(1, yN ), f1(1, 1)]T, F2i0 = [ f2(1, 0), f2(x−M , 0), . . . ,
f2(xN , 0), f2(1, 0)]T, and F2i1 =[ f2(1, 1), f2(x−M , 1), . . . , f2(xN , 1), f2(1, 1)]T.
Because vx00 and vx01 can be expressed as vx00 = [1, 0, . . . , 0]v4, vx01 = [1, 0, . . . , 0]v6, with

the block matrix technique and direct calculation, (22) can be rewritten as the following form:

[px00, px0 j , px01] = ∑
j

9∑
i=1,i �=2,5,8

c1i j ui c2i j + ∑
j

∑
i=2,8

c1i j u
T
i c2i j + ∑

j

9∑
i=1,i �=2,5,8

e1i j ui e2i j

+∑
j

∑
i=2,8

e1i j u
T
i e2i j + ∑

j

9∑
i=1,i �=2,5,8

c3i jvi c4i j + ∑
j

∑
i=2,8

c3i jv
T
i c4i j

+∑
j

9∑
i=1,i �=2,5,8

e3i jvi e4i j + ∑
j

∑
i=2,8

e3i jv
T
i e4i j + h1 (26)

where d1, c1i j , c2i j , c3i j , c4i j , e1i j , e2i j , e3i j and e4i j , i = 1, . . . , 4, 6, . . . , 9 are known matrices,
which can be calculated directly from the known matrices.

Equations (23)–(25) can be rewritten in the similar way:

[px10, px1 j , px11] = ∑
j

9∑
i=1,i �=2,5,8

c5i j ui c6i j + ∑
j

∑
i=2,8

c5i j u
T
i c6i j + ∑

j

9∑
i=1,i �=2,5,8

e5i j ui e6i j

+∑
j

∑
i=2,8

e5i j u
T
i e6i j + ∑

j

9∑
i=1,i �=2,5,8

c7i jvi c8i j + ∑
j

∑
i=2,8

c7i jv
T
i c8i j

+∑
j

9∑
i=1,i �=2,5,8

e7i jvi e8i j + ∑
j

∑
i=2,8

e7i jv
T
i e8i j + h2 (27)
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⎡⎢⎢⎣
py00

pyi0

py10

⎤⎥⎥⎦ = ∑
j

9∑
i=1,i �=2,5,8

c9i j ui c10i j + ∑
j

∑
i=2,8

c9i j u
T
i c10i j + ∑

j

9∑
i=1,i �=2,5,8

e9i j ui e10i j

+∑
j

∑
i=2,8

e9i j u
T
i e10i j + ∑

j

9∑
i=1,i �=2,5,8

c11i jvi c12i j + ∑
j

∑
i=2,8

c11i jv
T
i c12i j

+∑
j

9∑
i=1,i �=2,5,8

e11i jvi e12i j + ∑
j

∑
i=2,8

e11i jv
T
i e12i j + h3 (28)

⎡⎢⎢⎣
py01

pyi1

py11

⎤⎥⎥⎦ = ∑
j

9∑
i=1,i �=2,5,8

c13i j ui c14i j + ∑
j

∑
i=2,8

c13i j u
T
i c14i j + ∑

j

9∑
i=1,i �=2,5,8

e13i j ui e14i j

+ ∑
j

∑
i=2,8

e13i j u
T
i e14i j + ∑

j

9∑
i=1,i �=2,5,8

c15i jvi c16i j + ∑
j

∑
i=2,8

c15i jv
T
i c16i j

+ ∑
j

9∑
i=1,i �=2,5,8

e15i jvi e16i j + ∑
j

∑
i=2,8

e15i jv
T
i e16i j + h4 (29)

where all of the coefficient matrices are known, which can be calculated directly.
Now, dicretize (18) by (5) and (6), then:

BPQT + QPBT = QGQ
T

(30)

where G = (g(xi , y j ))(m+2)×(m+2).
Substituting (14)–(16), (19), (26)–(29) and the given p00 into the above equation, with direct

computation we can get:

c21Pc22 = ∑
j

9∑
i=1,i �=2,5,8

c17i j ui c18i j + ∑
j

∑
i=2,8

c17i j u
T
i c18i j + ∑

j

9∑
i=1,i �=2,5,8

e17i j ui e18i j

+∑
j

∑
i=2,8

e17i j u
T
i e18i j + ∑

j

9∑
i=1,i �=2,5,8

c19i jvi c20i j + ∑
j

∑
i=2,8

c19i jv
T
i c20i j

+∑
j

9∑
i=1,i �=2,5,8

e19i jvi e20i j + ∑
j

∑
i=2,8

e19i jv
T
i e20i j + h5 (31)

where c21, c22, h5, c17i j , c18i j , c19i j , c20i j , e17i j , e18i j , e19i j and e20i j , i = 1, . . . , 4, 6, . . . , 9 are
known matrices, which can be calculated directly.
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Take Vec(·) on both sides of (31), after calculation we get

Vec(P) =
9∑

i=1,i �=5
Ciui +

9∑
i=1,i �=5

Diui +
9∑

i=1,i �=5
Eivi +

9∑
i=1,i �=5

Fivi + Vec(h5) (32)

where all of the coefficients are known and can be calculated directly.

Remark 1
Without an additional condition for pressure p, there are no unique solutions for p in (9). Because
if p1 is the solution for p in (9), then p2 = p1 + constant is also another solution.

Thus, even if ui , vi , ui and vi are known, without such additional condition, we still cannot get

the solution for P from (31) uniquely. In addition, (32) is obtained through a pseudoinverse of the
matrix computation. So, when ui , vi , ui and vi are known, from (32) we can only get a numerical

result P1 for P , which is not unique. Further more, P1 + constant is also another solution and
the constant can be determined by the additional condition for pressure p, for instance p(0, 0)
is known.

Step 3: Based on steps 1 and 2, eliminate p.
Dicretize the first two equations of (9) by formulae (5) and (6), then:

APQT = BUQT + QUBT + QF1Q
T

(33)

QPAT = BV QT + QV BT + QF2Q
T

(34)

where F1 = ( f1(xi , y j )) and F2 = ( f2(xi , y j )).
As what we have done with (30), substitute (14)–(16) and (19), (26)–(29) into (33), and then

we have

c23Pc24 = ∑
j

9∑
i=1,i �=2,5,8

c25i j ui c26i j + ∑
j

∑
i=2,8

c25i j u
T
i c26i j + ∑

j

9∑
i=1,i �=2,8

e25i j ui e26i j

+∑
j

∑
i=2,8

e25i j u
T
i e26i j + ∑

j

9∑
i=1,i �=2,5,8

c27i jvi c28i j + ∑
j

∑
i=2,8

c27i jv
T
i c28i j

+∑
j

9∑
i=1,i �=2,8

e27i jvi e28i j + ∑
j

∑
i=2,8

e27i jv
T
i e28i j + h6 (35)

where all the coefficients can be calculated directly from above-mentioned matrices.
By taking Vec(·) on both sides of (35), we can get a new equation. Substituting (32) into this

new equation, after direct computation, we have

H5 Vec(Ũ ) =
9∑

i=1,i �=5
H1i ui +

9∑
i=1,i �=5

H2i ui +
9∑

i=1,i �=5
H3ivi +

9∑
i=1,i �=5

H4ivi + Vec(h6) (36)
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Define

Z1 =[u1, uT4 , u7, u
T
2 , uT8 , u3, u

T
6 , u9]T, Z2 =[u1, uT4 , u7, u

T
2 , uT8 , u3, u

T
6 , u9]T

S1 =[v1, vT4 , v7, v
T
2 , vT8 , v3, v

T
6 , v9]T, S2 = [v1, vT4 , v7, v

T
2 , vT8 , v3, v

T
6 , v9]T

Z1 and S1 are vectors of (4m + 12) × 1, Z2 and S2 are vectors of (4m + 4) × 1.
Thus (36), i.e. (33), can be expressed as the following form:

R1Vec(Ũ ) + R2Z2 + R3S2 = R4Z1 + R5S1 + R6 (37)

In addition, (34) can be rewritten in the similar way:

T1Vec(Ṽ ) + T2Z2 + T3S2 = T4Z1 + T5S1 + T6 (38)

Step 4: Get the numerical results of u and v.
There are 2(m + 4)2 elements aggregately in Z1, Z2, S1, S2,Vec(Ũ ) and Vec(Ṽ ). And there are

2(m + 2)2 equations in (37) and (38) aggregately. If provided the other 2(4m + 12) equations on
the boundaries, we can get the numerical solutions of (37) and (38).

For example, if the boundary conditions are Dirichlet boundary conditions, then Z1 and S1 in
(37) and (38) are known. Since there are 2(m + 2)2 unknown elements in Z2, S2,Vec(Ũ ) and
Vec(Ṽ ), we can get the numerical solutions of Z2, S2,Vec(Ũ ) and Vec(Ṽ ) from (37) and (38)
directly.

If the boundary conditions are of the mixed boundary condition type, we can do as follows.
From the boundary conditions, we can obtained 2(4m + 12) equations in related to Z1, Z2, S1
and S2. Thus with the 2(m + 2)2 equations in (37) and (38), we can have the numerical solutions
Vec(Ũ ),Vec(Ṽ ), Z1, Z2, S1 and S2.

4. NUMERICAL RESULTS AND ANALYSIS

To verify our method, three examples are treated.

Example 1
In this example, we consider Equation (1) with the Dirichlet boundary conditions.

Its exact solutions are as in Reference [17]:

u = (x4 − 2x3 + x2)(4y3 − 6y2 + 2y)

v = −(y4 − 2y3 + y2)(4x3 − 6x2 + 2x)

p = x5 + y5

Set Eu =max|Ũi j −u(xi , y j )|, Ev =max|Ṽi j −v(xi , y j )|, Eu1 is the maximum error of the normal
derivatives on the boundaries of u. And Ev1 is the maximum error of the normal derivatives on
the boundaries of v. And the numerical results are shown in Table I. The results of Reference [17]
are shown in Table II. Our results are better than those in Reference [17].
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Table I. The errors of U, V of Example 1.

M = N = 4 M = N = 5 M = N = 6 M = N = 7 M = N = 8

Eu 4.2115e−005 2.6542e−005 1.4916e−005 9.7517e−006 6.0942e−006
Ev 4.0414e−005 2.6762e−005 1.4897e−005 9.7517e−006 6.0941e−006

Table II. The errors in Reference [17].
NT = 32 NT = 64 NT = 128 NT = 256 NT = 512

Eu 1.16684e−002 5.89109e−003 2.95885e−003 1.48404e−003 7.43309e−004

Table III. The errors of U, V of Example 2 (m = 1).

M = N = 4 M = N = 5 M = N = 6 M = N = 7 M = N = 8

Eu 3.6063e−004 1.6463e−004 9.5098e−005 6.0142e−005 3.8168e−005
Ev 3.5567e−004 1.8215e−004 9.6404e−005 6.0244e−005 3.7889e−005

Example 2
In this example, we consider Equation (1) with the Dirichlet boundary conditions.

Its exact solutions are:

u = sin(m�x) cos(m�y), v =− cos(m�x) sin(m�y), p= sin(m�x) cos(m�y) ex+y

where m is a integer. In this example, m = 1, 2, 3 are taken, respectively.
Set Eu and Ev as defined above. With our method when m = 2, M = 8, Eu = 5.2003e−004.

When m = 3, M = 10, Eu = 3.9292e−004.
Table III shows the numerical results when m = 1. In this example, the exact solutions are

oscillating functions. The results show that our method can also be applied to such problems.

Example 3
In this example, we consider Equation (1) with the boundary conditions:

u = 0, v = 0 on �\{y = 1}
u + uy = f3, v = 0 on {y = 1}

Its exact solutions are

u = 2x2(1 − x)2y(1 − y)(1 − 2y), v =−2x(1 − x)(1 − 2x)y2(1 − y)2

p = x2 − y2

Thus, f1, f2 and f3 can be calculated. And the numerical results are shown in Table IV.
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Table IV. Only the errors of U, V and their normal derivatives on the boundaries for Example 3.

N M Eu Ev Eu1 Ev1

4 4 1.8924e−006 1.2945e−006 1.3791e−004 1.3637e−004
6 6 7.2712e−008 2.2920e−008 4.6084e−005 4.5413e−005
8 8 1.7389e−008 3.8631e−009 1.8668e−005 1.8515e−005

The numerical results of these examples show that in our method the velocity and the pressure
can be decoupled easily and successfully, and ux + vy = 0 can be satisfied automatically. And our
method is of high accuracy, of good convergence, simple in principle and convenient to program.
The parameters in the DE transformations might depend on the problems and their solutions. For
different problems, different parameters might be chosen differently.

5. CONCLUSIONS

The numerical results show that Sinc-collocation method with boundary treatment (SCMBT) for
the Stokes equations is effective and by our method the velocity and the pressure can be decoupled
easily and successfully. The numerical results show that our method is effective, of high accuracy,
of good convergence. Our method is easy to treat the boundary conditions, simple in principle and
convenient to implement by programming.

The SCMBT is effective for the Stokes equations. We will try to apply this method to the Navier–
Stokes equations though there are some other technique problems which need to be solved. The
details for solving the Navier–Stokes equations will be studied in another paper.
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